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The identification of the cosmological constant  term with the energy density of  
the vacuum enables lower and upper  limits to be placed on its value. The upper  
limit arises from the constraint that the total zero-point energy, which also 
gravitates, should not dominate cosmological dynamics, while the lower limit 
can result from the operational requirement that the vacuum-energy shifts over 
atomic or nuclear scales be at least measurable over Hubble time scales. 

The cosmological constant term introduced and discarded by Einstein 
has been recently rejuvenated as representing the energy-momentum of the 
vacuum in quantum field theory (e.g., Zeldovich and Novikov, 1971). Since 
for a covariant definition the vacuum should not single out any preferred 
frame, its energy-momentum tensor (T~v)vac must be uniquely of the form 
(T~.~)vac = Pvacg~, where Pv,o is the vacuum energy density (The uniqueness 
of  g~,v arises, as is well known, from the fact that if there is no preferred 
frame, there are no preferred vectors, which is possible only if all vectors 

v v are eigenvectors, i.e., if X ,  V~ = KV~ for all K;  then X~ is proportional to 
g~). Thus the Einstein field equations with the vacuum term take the form 

G "~ = 87rG( T ~'~ + T(vac)) = 8"n 'G( T ~ + g Pvac) 

Comparing with the field equations with a cosmological Ag,~ term, we have 
the identification 

8~-G 
A = - -  pvac = Kpvac (1) 04 

[see Sivaram et al. (1976) for a more general treatment]. Now the energy 
of  the vacuum or zero-point energy due to quantum fluctuations of  various 
fields would in general relativity also contribute to the gravitational field 
and hence to cosmological dynamics. 
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Zeldovich has suggested a possible physical picture to estimate pvar 
and hence A. One can assume the vacuum to consist of particles of  mass 
m at a separation of ~ - h/rnc (i.e., a particle in a Compton volume). Then 
the energy density would be ~m(mc/h)3~mac3/h 3. For electrons and 
protons this would give absurdly large values of  ~105 and ~1017 g /cm 3, 
respectively. Only particles with m - 10 -3 eV [i.e., ~ 10-9m (electron)] would 
give reasonable vacuum densities if they uniformly fill phase space. Again 
following Zeldovich, we can consider the vacuum energy as arising from 
gravitational interactions of  energy ~ Grn2/,~ of nearby particles, which 
would imply a mean vacuum mass density of (Grn2/A)/C2/~ 3 ~'~-" Gm6c2/h 4. 
These suggestions are, however, rather ad hoc, since on dimensional grounds 
P v a c  can be of the form (rn4c3/h3)(Gm2/hc) '~ with n any number. We shall 
consider below alternative ways of estimating ^ from more stringent con- 
straints. 

It may be remarked that our arguments pertain to A in the present 
epoch of the universe and not the large vacuum energy densities at the very 
early epochs, which have been invoked recently, involving G U T  phase 
transitions in inflationary models. Our limits would apply to any residual 
vacuum energies that may be present at the current epoch and the corre- 
sponding ^.  The presence of such a term can help ameliorate problems 
with the age of the universe (i.e., discrepancy between the Hubble age and 
the age of the oldest objects such as globular clusters) that arise in inflation- 
ary models which require closure density, implying vast amounts of  dark 
matter (Sivaram, 1985). 

The zero-point energy due to the curvature of  space-t ime is identified 
by Sakharov (1968) with a term identical to the Hilbert action of Einstein's 
theory, i.e., the Lagrange density of  the zero-point energy is expanded as 

L(R)  ~ const x heR f k dk + higher order terms (2) 

where k is the wave number. The wave number  is assumed cut off at the 
Planck length, for which kpl = (c3/hG) 1/2"~ 1033 cm -t. I f  we assume that the 
average curvature of space corresponds to that of A and introduce the cutoff 
in the integral at kp~, then we can write the zero-point energy density as 

~ 1  2 p~a~ ~ hc Akr, l (3) 

This energy density should not exceed the closure density pc, which for an 
observed Hubble 's  constant H0 is given as pc~3H2oc2/8~G. From the 
equality Pvac ~'~ Pc, we get the upper  limit for A as 

6Ho c 
A <- 8"rrGhk~l (4) 
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which, substituting for Ho = 100 km [s[ Mpc and k~,~, etc., would give A-< 
10 -57 cm -2. 

For the lower limit, to be arrived at from microphysical considerations, 
we would impose the operational constraint that for the vacuum-energy 
shifts over atomic or nuclear scales to be physically meaningful they should 
be at least measurable over Hubble time scales. This operational requirement 
was invoked in a somewhat  different context in earlier papers (e.g., Sivaram, 
1982a). It was pointed out (Sivaram, 1982b, 1984) that the characteristic 
length e2/2mec 2= g2/2mpC2= h / m ~ c  was a very pertinent scale for nuclear 
and atomic fundamental  processes (m,~ is the pion mass, and e 2 and gZ 
relate to electromagnetic and nuclear couplings, and me and mp a r e  electron 
and proton masses, respectively). 

Using equations (1), we obtain the time-energy uncertainty principle 
in this context in the form (see also Sivaram, 1982a) 

A [  e 2 '~34~r 1 h (5) 
- )  

which imposes the lower limit 

A >-6hHom3ec2G/ e 6 (6) 

again giving A-> 10 -57 cm -2. 
Thus the two limits seem to converge on fixing A as 10 57 cm 2! These 

limits on A are much less ad hoc and better defined than earlier attempts 
to relate it to quantum parameters,  and if A is to be related to quantum 
vacuum energy, these are the types of  relations one would expect. 
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